|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                       | · · · ·  |           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|----------|-----------|-----|
| <b>The second seco</b> | ~ 1 1    | •                     |          | 0 \ C     | 101 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Valaatad | acomotive a payane of | AME IA   | V 1 # 0 # |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VUDUUU   | ODIMADIFIC MITIMO     | Urv IA   | 1 1/17    |     |
| 1000 T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEICLICH | ELVINCII IL DUI UNICI | C/ J 1/1 |           |     |

|          | 0         | 1        | ( ) ) ) ( ) |
|----------|-----------|----------|-------------|
| PC1      | 1.860 (3) | P—C4     | 1.872 (3)   |
| Р—С7     | 1.856 (3) | C1—C2    | 1.529 (5)   |
| C1—C3    | 1.522 (4) | C4—C5    | 1.531 (4)   |
| C4—C6    | 1.527 (5) | C7—C8    | 1.534 (5)   |
| С7—С9    | 1.533 (4) |          |             |
| C7—P—C4  | 102.0(1)  | C7—P—C1  | 102.9(1)    |
| C4—P—C1  | 104.7 (1) | C3-C1-C2 | 109.9 (2)   |
| C3—C1—P  | 110.5 (2) | C2—C1—P  | 108.6 (2)   |
| C6—C4—C5 | 110.5 (3) | C6C4P    | 109.5 (2)   |
| C5—C4—P  | 117.5 (2) | C9—C7—C8 | 111.1 (3)   |
| С9—С7—Р  | 109.0 (2) | С8—С7—Р  | 117.4 (2)   |

The crystal decay of compound (2) during data collection is caused by mechanical stress in the capillary as described elsewhere (Bruckmann Krüger & Lutz, 1995). In the present case, the deterioration of the crystal is even more apparent because of the method of sample preparation (Bruckmann, 1995).

For both compounds, data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: DATAP (Coppens, Leiserowitz & Rabinovich, 1965); program(s) used to solve structures: SHELX86 (Sheldrick, 1990); program(s) used to refine structures: SHELX93 (Sheldrick, 1993); GFMLX (Flack, 1983; Busing, Martin & Levy, 1962); molecular graphics: ORTEPII (Johnson, 1976); XANADU (Roberts & Sheldrick, 1976); SYBYL (Tripos Associates Inc., 1994); software used to prepare material for publication: DAESD (Davis & Harris, 1970); DIS-COVER94.0 (Biosym Technologies Inc., 1994).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1100). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

# References

- Biosym Technologies Inc. (1994). DISCOVER94.0. Biosym Technologies Inc., San Diego, USA.
- Boese, R. (1994). Crystal Growing at Low Temperatures. Praktische Aspekte der Kristallstrukturanalyse, TU Dresden, pp. 26.8–28.8.
- Bruckmann, J. (1995). PhD thesis, Universität Bochum, Germany.
- Bruckmann, J. & Krüger, C. (1995a). Acta Cryst. C51, 1155-1158.
- Bruckmann, J. & Krüger, C. (1995b). Acta Cryst. C51, 1152-1155.
- Bruckmann, J., Krüger, C. & Lutz, F. (1995). Z. Naturforsch, Teil B. 50, 351–360.
- Busing, W. R., Martin, K. O. & Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Davis, R. E. & Harris, D. R. (1970). DAESD. Roswell Park Memorial Institute, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Roberts, P. & Sheldrick, G. M. (1976). XANADU. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Tolman, C. A. (1970). J. Am. Chem. Soc. 92, 2956–2965.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
- Tripos Associates Inc. (1994). SYBYL. Version 6.03. Tripos Associates Inc, St Louis, USA.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1736-1741

# **O-Phospho-DL-threonine and O-Phospho-**L-threonine Compared with their Serine Analogs

Waldemar Maniukiewicz,†‡ Witold Kwiatkowski†§ and Robert H. Blessing\*

Hauptman-Woodward Institute, 73 High Street, Buffalo, New York 14203, USA

(Received 14 June 1995; accepted 20 November 1995)

# Abstract

In crystals of *O*-phospho-DL-threonine and *O*-phospho-L-threonine, the molecules are zwitterions HO<sub>3</sub><sup>-</sup> POCH-(CH<sub>3</sub>)CH(NH<sub>3</sub><sup>+</sup>)CO<sub>2</sub>H linked by three-dimensional networks of strong P—O—H···O=P, C—O—H···O=P, N—H···O=P and N—H···O=C hydrogen bonds with  $\langle O \cdots O \rangle = 2.55$  (3) Å and  $\langle N \cdots O \rangle = 2.84$  (4) Å. Both the molecular conformations and the nearest-neighbor hydrogen-bonded surroundings are very similar in the racemic and enantiomeric crystals of the threonine compounds, but earlier studies of crystals of the analogous serine compounds have shown that the serine zwitterions HO<sub>3</sub><sup>-</sup> POCH<sub>2</sub>CH(NH<sub>3</sub><sup>+</sup>)CO<sub>2</sub>H have different conformations about the C $\beta$ —O $\gamma$ —P phosphate ester bonds and different hydrogen-bonded surroundings.

## Comment

The phosphate esters,  $O\gamma$ -phosphoserine,  $O\gamma$ -phosphothreonine,  $O\zeta$ -phosphotyrosine, and the phosphoramide, N $\delta$ 1- or N $\epsilon$ 2-phosphohistidine, correspond to the residues involved in the reversible protein phosphorylations that regulate many cellular processes. Crystal structure determinations have been reported for both DL and L forms of the phosphate esters (see scheme below) of both serine (Putkey & Sundaralingam, 1970; Sundaralingam & Putkey, 1970) and threonine (Cole, 1968; Slone & Cole, 1971) but no atomic coordinates or structural details were published for the threonine compounds. We have recently carried out charge-density analyses of the serine compounds (Kwiatkowski, Maniukiewicz & Blessing, 1994) and, preliminary to corresponding analyses of the threonine compounds, we have redetermined their crystal structures.

<sup>†</sup> Permanent address: Technical University of Łodz, 90-924 Łodz, Poland.

<sup>‡</sup> Present address: Institut de Ciencia de Materiales, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain.

<sup>§</sup> Present address: Department of Chemistry, University of Missouri at St Louis, 8001 Natural Bridge Road, St Louis, Missouri 63121-4499, USA.



As expected, the valence geometry (Table 2) is much the same in both the DL and L crystals of both Ophosphothreonine and O-phosphoserine. The molecular conformations (Table 3 and Fig. 1) are also very similar in the two threonine structures, but the serine structures manifest the conformational flexibility of the C $\beta$ — O $\gamma$ —P ester linkage: relative to the phosphothreonine conformations, the phosphate group in O-phospho-DLserine is rotated by  $\Delta \chi^3 \simeq -25^\circ$  about the O $\gamma$ —P bond, and in O-phospho-L-serine the phosphate group is further rotated by  $\Delta \chi^2 \simeq -20^\circ$  about the C $\beta$ — O $\gamma$  bond. These conformational differences seem to be due to intermolecular crystal forces rather than intramolecular steric forces and the conformational



Fig. 1. Perspective illustrations of the L-molecular structures projected onto planes perpendicular to their  $C\alpha$ — $C\beta$ — $C\gamma$  planes and parallel to their  $C\alpha \rightarrow O\gamma$  directions: (a) O-phospho-DL-threonine, (b) Ophospho-L-threonine, (c) O-phospho-DL-serine, and (d) O-phospho-L-serine. The (295 K) displacement ellipsoids are plotted at 50% probability levels. The two phosphate H atoms in (c) are disordered 'half-atoms' (see footnote to Table 2).

similarity in the two threonine crystals does not imply that the  $\gamma$ -methyl group imparts conformational rigidity. A conformation folded about C $\beta$ ---O $\gamma$ , as in the Lphosphoserine crystals [Fig. 1(*d*)], would surely also be favorable for phosphothreonine.

Uniquely among the four structures, O-phospho-DLserine crystallizes as a monohydrate and its zwitterion structure is unique in that its phosphate proton is disordered between two sites. The groups that bear the disordered proton, P—O $\varepsilon$ 2—H<sub>0.5</sub> and P—O $\varepsilon$ 3—H<sub>0.5</sub>, each form hydrogen bonds to symmetrically equivalent groups; the  $\varepsilon^2$  groups bond across inversion centers and the  $\varepsilon 3$  groups bond across diad axes. These disordered P—O— $H \cdots O = P \Rightarrow P = O \cdots H = O - P$  hydrogen bonds are very short with  $O \cdot \cdot O = 2.49$  Å, and presumably they involve proton tunnelling in doublewell potentials with low central barriers (Jeffrey & Saenger, 1991). In low-temperature diffraction experiments with *O*-phospho-DL-serine monohydrate, we have found no evidence of a disordered-to-ordered phase transition down to 125 K.

Although the packing arrangements (Fig. 2) in the four crystal structures are quite different, the hydrogenbond networks have a number of features in common, including rather similar hydrogen-bond dimensions (Table 4). The four hydrogen-bond networks are intricately connected in three dimensions; there is no segregation into discrete molecular complexes or chains or layers. In the two threonine structures, the non-polar  $\gamma$ methyl groups occupy more-or-less isolated interstices in the polar hydrogen-bond networks. In all four structures, the P—O— $H \cdots O$  P bonds, even though they link pairs of like-charged anionic phosphate groups, are very strong, with  $\langle O \cdots O \rangle = 2.52$  (3) Å and  $\langle H \cdots O \rangle$ = 1.62(9) Å. The salt-bridge N—H···O=P bonds, on the other hand, even though they link oppositely charged ammonium and phosphate groups, are somewhat weaker, with  $\langle N \cdots O \rangle = 2.83 (4) \text{ Å}$  and  $\langle H \cdots O \rangle$ = 1.88 (3) Å. In the  $P2_1/c$  DL-threenine structure, the phosphate groups form hydrogen-bonded cyclic dimers around the inversion centres at 0,0,0 and 0,1/2,1/2; in the C2/c DL-serine structure, the disordered, short hydrogen bonds link the phosphates into zigzag chains along [0,0,z] and [1/2,1/2,z] with alternating inversion symmetry and diad symmetry at successive links; in the  $P2_12_12_1$  L-threenine and L-serine structures, the phosphates form hydrogen-bonded chains along the screw axes parallel to [100] and to [010], respectively. In both the rings and chains of phosphate groups, the hydrogen bonds are cooperatively strengthened by mutual polarization,

$$\{\cdots O = P = O - H \cdots O = P = O - H \cdots \leftrightarrow \cdots O^{-} = P = O^{+} - H \cdots O^{-} = P = O^{+} - H \cdots \},$$

that increases the contribution of the charge-separated canonical forms to the resonance-hybrid structures.



Fig. 2. Stereoscopic diagrams of the unit-cell packing for: (a) O-phospho-DL-threonine, (b) O-phospho-L-threonine, (c) O-phospho-DL-serine monohydrate, and (d) O-phosopho-L-serine. Parts (a) and (b) this work; part (c) Putkey & Sundaralingam (1970), C2/c. a = 18.402, b = 8.298, c = 12.276 Å,  $\beta = 120.63^{\circ}$ , Z = 8; and part (d) Sundaralingam & Putkey (1970),  $P2_12_12_1$ , a = 7.741, b = 9.060, c = 10.159 Å, Z = 4. The phosphate H atoms in (c) are disordered 'half-atoms' (see footnote to Table 2).

All of the phosphohydroxyl P-OH groups and carboxyl C-OH groups are single donors in hydrogen bonds to phosphoryl P=O groups; none of the P-OH groups, and only one of the C-OH groups, namely that in the L-serine structure, accepts a hydrogen bond. The water molecule in the DL-serine structure accepts from two N-H donors and donates to two P=O acceptors. All but two of the P=O groups are double acceptors; the exceptions occur in the DL-serine structure in which  $O\varepsilon 1$  is a triple acceptor and  $O\varepsilon 3$ is a single acceptor. The  $O\gamma$  atoms of the phosphate ester linkages do not accept intermolecular hydrogen bonds, but they do form relatively short intramolecular contacts with the N—H2 H atoms of the  $\alpha$ -ammonium groups, with  $\langle N \cdots O \rangle = 2.88 (7), \langle H \cdots O \rangle = 2.53 (9) \text{ Å},$ and  $\langle N-H \cdots O \rangle = 101 (2)^\circ$ . Whereas the P=O groups are strong, multiple acceptors, the C'=O' groups are relatively weak, single acceptors; the N $\cdots$ O and H $\cdots$ O

distances are 0.03–0.2 Å longer in the N—H···O'=C' than in the N—H···O=P hydrogen bonds. In general, the stronger donors tend to bind strong acceptors, and the weaker donors tend to bind the weaker acceptors. In the two DL-structures the C'=O' groups interact in centrosymmetric, antiparallel dipole pairs,

$$(\delta -) O \bullet \bullet C (\delta +)$$

$$(\delta +) C \bullet \bullet O (\delta -)$$

with  $O \cdots C = 2.982$  (2) and 3.224 (2) Å, and  $C = O \cdots C = 101.1$  (2) and 100.9 (2)°, in the serine and threonine structures, respectively.

A referee pointed out that the intricate hydrogenbonding schemes in these crystals might profitably be analysed by the graph-set method (Etter, MacDonald & Bernstein, 1990); we intend to do this along with our

nd nl2

work in progress on analyses of the thermal vibrations and charge-density distributions in the crystals. In addition, the editor pointed out that the two ThrP structures are somewhat unusual in that, in violation of Wallach's rule (Wallach, 1895; as cited by Brock, Schweizer & Dunitz, 1991), the racemic crystals are more dense than the enantiomeric crystals. The difference in mass densitics is 0.5%, which is possibly significant in terms of the uncertainty in the difference in unit-cell volumes. It also turns out that in the nominally more dense L crystals  $\langle U_{\rm iso} \rangle_{\rm non-H} = 0.025$  (6) Å<sup>2</sup> while in the nominally less dense DL-crystals  $\langle U_{\rm iso} \rangle_{\rm non-H} = 0.027 (5) Å^2$ ; this also hints that there might be slightly more free volume in the racemic crystals.

# Experimental

Crystals of O-phospho-DL-threonine, O-phospho-L-threonine, O-phospho-DL-serine monohydrate, and O-phospho-L-serine were grown from aqueous solutions of commercially available microcrystalline materials (Sigma Chemical Co.) by vapor diffusion of acetone. Our diffraction analyses of the threonine structures are summarized below. Our analyses of the serine structures were similar, and confirmed the results reported by Putkey & Sundaralingam (1970) and Sundaralingam & Putkey (1970); details are included with the archived supplementary materials.

#### **O-Phospho-DL-threonine**

Crystal data

 $C_4H_{10}NO_6P$  $M_r = 199.10$ Monoclinic  $P2_1/c$ a = 7.249(2) Å b = 9.893(2) Å c = 11.247(3) Å  $\beta = 102.86 (2)^{\circ}$  $V = 786.3(3) \text{ Å}^3$ Z = 4 $D_x = 1.682 \text{ Mg m}^{-3}$  $D_m$  not measured F(000) = 416 e

#### Data collection

Siemens P3 diffractometer  $\omega/2\theta$  scan profiles Absorption correction: none 2073 measured reflections 1031 unique reflections 917 unique reflections with  $[|F|^2 \geq 3\sigma(|F|^2)]$  $R_{\rm int}(|F|^2) = 0.012$ 

## Refinement

Full matrix on  $|F|^2$ R(|F|) = 0.028

Mo  $K\alpha$  radiation  $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 10 - 20^{\circ}$  $\mu = 0.344 \text{ mm}^{-1}$ T = 295 KNeedle  $0.4\,\times\,0.2\,\times\,0.15$  mm Colourless

 $\theta_{\rm max} = 25^{\circ}$  $(\sin\theta_{max})/\lambda = 0.595 \text{ Å}^{-1}$  $h = 0 \rightarrow 7$  $k = -10 \rightarrow 10$  $l = -12 \rightarrow 12$ 2 standard reflections frequency: 60 min intensity variation: <2%

Extinction correction:  $|F_c|' =$  $|F_c|(1+g\lambda^3|F_c|^2/\sin 2\theta)^{-1/4}$ 

$$wR(|F|^2) = 0.075$$
  
 $S = 3.08$   
917 reflections  
110 parameters  
 $w = 1/\sigma^2(|F_o|^2)$   
Final cycle  
 $|\delta|/\sigma \le 0.004$   
 $-0.32 \le \Delta \rho \le 0.20 \text{ e} \text{ Å}^{-3}$ 

# **O-Phospho-L-threonine**

Crystal data  $C_4H_{10}NO_6P$  $M_r = 199.10$ Orthorhombic  $P2_{1}2_{1}2_{1}$ a = 6.709 (1) Åb = 9.854 (1) Å c = 11.766 (2) Å V = 777.9 (2) Å<sup>3</sup> Z = 4 $D_x = 1.700 \text{ Mg m}^{-3}$  $D_m$  not measured  $F(000) = 416 \,\mathrm{e}$ 

#### Data collection

Siemens P3 diffractometer  $\omega/2\theta$  scan profiles Absorption correction: none 2410 measured reflections 821 unique reflections 762 unique reflections with  $[|F|^2 \ge 3\sigma(|F|^2)]$  $R_{\rm int}(|F|^2) = 0.014$ 

#### Refinement

Full matrix on  $|F|^2$ R(|F|) = 0.026 $wR(|F|^2) = 0.065$ S = 2.38762 reflections 110 parameters  $w = 1/\sigma^2 (|F_o|^2)$ Final cycle  $|\delta|/\rho \le 0.06$  $-0.20 \le \Delta 
ho \le 0.21$  e Å<sup>-3</sup> Extinction correction:  $|F_c|' =$  $|F_c|(1+g\lambda^3|F_c|^2/\sin 2\theta)^{-1/4}$ Extinction coefficient:  $g = 3.88 (4) \times 10^{-5}$ Atomic scattering factors from Cromer & Waber (1974) and Stewart, Davidson & Simpson (1965) (H)

Table 1. Fractional atomic coordinates and equivalent isotropic mean-square displacement parameters  $(Å^2)$ 

|       | x                 | у             | Z              | $U_{\rm iso}$ |
|-------|-------------------|---------------|----------------|---------------|
| O-Pho | spho-DL-threonine |               |                |               |
| Р     | 0.19361 (9)       | 0.11575 (7)   | -0.07310 (6)   | 0.0215 (3)    |
| Oel   | 0.2372 (3)        | 0.05417 (20)  | 0.05325 (15)   | 0.0307 (5)    |
| Οε2   | 0.2748 (3)        | 0.25441 (19)  | -0.07862 (17)  | 0.0346 (5     |
| Oe 3  | -0.02078 (25)     | 0.11244 (18)  | -0.12768 (16)  | 0.0285 (5     |
| Ογ    | 0.29014 (24)      | 0.02803 (17)  | -0.16134 (15)  | 0.0249 (5     |
| o'    | 0.5195 (3)        | 0.04781 (18)  | -0.36067 (17)  | 0.0301 (5     |
| 0′′   | 0.2149 (3)        | 0.03444 (20)  | -0.45690 (18)  | 0.0368 (6     |
| N     | 0.5158 (3)        | -0.18718 (21) | -().24594 (19) | 0.0242 (5     |
| C′    | 0.3660 (4)        | -0.0068(3)    | -().38022 (23) | 0.0225 (6     |

 $g = 1.12(27) \times 10^{-5}$ Atomic scattering factors from Cromer & Waber (1974) and Stewart, Davidson & Simpson (1965) (H)

Extinction coefficient:

 $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 10-20^{\circ}$  $\mu = 0.348 \text{ mm}^{-1}$ T = 295 KNeedle  $0.35\,\times\,0.15\,\times\,0.15$  mm Colorless

Mo  $K\alpha$  radiation

 $\theta_{\rm max} = 25^{\circ}$  $(\sin\theta_{\rm max})/\lambda = 0.595 {\rm \AA}^{-1}$  $h = 0 \rightarrow 7$  $k = -11 \rightarrow 11$  $l = -13 \rightarrow 13$ 2 standard reflections frequency: 60 min intensity variation: <3%

| Cα          | 0.3300 (4)      | -0.13146 (25) | -0.31021 (22) | 0.0210 (6) |
|-------------|-----------------|---------------|---------------|------------|
| Сβ          | 0.2056 (4)      | -0.09412 (25) | -0.22121 (22) | 0.0222 (6) |
| Ċγ          | 0.1917 (4)      | -0.2055 (3)   | -0.13155 (25) | 0.0308 (7) |
| O-Phos      | pho-L-threonine |               |               |            |
| P           | 0.12560 (13)    | 0.12779 (8)   | 0.06989 (6)   | 0.0178 (3) |
| 0ε1         | 0.1546 (4)      | 0.19011 (24)  | -0.04481 (18) | 0.0257 (6) |
| Oe2         | 0.2042 (4)      | -0.01321 (23) | 0.08430 (19)  | 0.0277 (6) |
| <b>Ο</b> ε3 | -0.0982(3)      | 0.13046 (23)  | 0.10616 (18)  | 0.0252 (6) |
| 0γ          | 0.2415 (3)      | 0.21409 (22)  | 0.16278 (18)  | 0.0230 (6) |
| o'          | 0.5415 (4)      | 0.18037 (23)  | 0.35573 (21)  | 0.0279 (6) |
| 0''         | 0.2450 (4)      | 0.2019 (3)    | 0.44187 (21)  | 0.0407 (8) |
| Ν           | 0.5071 (5)      | 0.4211 (3)    | 0.24966 (25)  | 0.0216 (6) |
| C′          | 0.3857 (6)      | 0.2391 (3)    | 0.3725 (3)    | 0.0226 (7) |
| Cα          | 0.3272 (5)      | 0.3664 (3)    | 0.30744 (25)  | 0.0195 (7) |
| Сβ          | 0.1638 (5)      | 0.3310 (3)    | 0.2228 (3)    | 0.0194 (7) |
| Ċγ          | 0.1107 (6)      | 0.4467 (3)    | 0.1429 (3)    | 0.0282 (8) |
|             |                 |               |               |            |

For the non-H atoms,

$$U_{\rm iso} = (1/3) \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j,$$

where the  $U_{ij}$  are from atomic Debye–Waller factors  $W = \exp(-2\pi^2 \sum_{i=1}^3 \sum_{j=1}^3 h_i h_j a_i^* a_j^* U_{ij})$ .

# Table 2. Bond lengths (Å) and valence angles (°) in DLand L-crystals of O-phosphothreonine and O-phosphoserine

| ie | r | u | u | e |  |
|----|---|---|---|---|--|
|    |   |   |   |   |  |

|                                       | DL-ThrP   | L-ThrP    | DL-SerP.H2O* | L-SerP*   |
|---------------------------------------|-----------|-----------|--------------|-----------|
| N—Ca                                  | 1.485 (3) | 1.487 (4) | 1.479 (3)    | 1.489 (3) |
| Ca—C'                                 | 1.517 (3) | 1.521 (4) | 1.513 (3)    | 1.529 (3) |
| C'—O'                                 | 1.212 (3) | 1.211 (4) | 1.205 (3)    | 1.201 (3) |
| C'—O''                                | 1.300 (3) | 1.301 (4) | 1.309 (3)    | 1.308 (3) |
| $C\alpha - C\beta$                    | 1.534 (3) | 1.522 (4) | 1.514 (4)    | 1.519 (3) |
| $C\beta - C\gamma$                    | 1.512 (4) | 1.520 (4) | -            | -         |
| $C\beta - 0\gamma$                    | 1.451 (3) | 1.448 (4) | 1.447 (3)    | 1.436 (3) |
| ΟγP                                   | 1.593 (2) | 1.588 (2) | 1.585 (2)    | 1.592 (2) |
| P-Oe1                                 | 1.513 (2) | 1.495 (2) | 1.498 (2)    | 1.497 (2) |
| ΡΟε2                                  | 1.499 (2) | 1.496 (3) | 1.523 (2)    | 1.498 (2) |
| Ρ—Οε3(-Η)                             | 1.539 (2) | 1.561 (2) | 1.518 (2)    | 1.548 (2) |
| $N-C\alpha-C'$                        | 108.2 (2) | 108.6 (3) | 110.2 (2)    | 107.2 (2) |
| $N - C\alpha - C\beta$                | 111.9 (2) | 111.7 (3) | 110.5 (2)    | 110.1 (2) |
| $C\alpha - C' = O'$                   | 121.7 (2) | 122.3 (3) | 123.4 (2)    | 122.3 (2) |
| $C\alpha - C' - O''$                  | 112.5 (2) | 111.1 (3) | 110.4 (2)    | 112.3 (2) |
| 0'-C'-0''                             | 125.8 (2) | 126.5 (3) | 126.2 (3)    | 125.4 (2) |
| $C' - C\alpha - C\beta$               | 109.7 (2) | 109.0 (3) | 109.7 (2)    | 109.9 (2) |
| $C\alpha - C\beta - C\gamma$          | 113.3 (2) | 113.6 (3) | -            | -         |
| $C\alpha - C\beta - 0\gamma$          | 104.7 (2) | 104.0 (3) | 106.5 (2)    | 105.5 (2) |
| $C\gamma - C\beta - 0\gamma$          | 112.4 (2) | 112.3 (3) | -            |           |
| $C\beta - O\gamma - P$                | 123.0 (1) | 125.8 (2) | 120.7 (2)    | 121.1 (2) |
| $0\gamma - P - 0\varepsilon 1$        | 109.7 (1) | 109.7 (1) | 103.7 (1)    | 109.2 (1) |
| $O\gamma - P - O\epsilon^2$           | 104.0 (1) | 104.3 (1) | 108.2 (1)    | 108.9 (1) |
| $O\gamma - P - O\varepsilon 3$        | 106.5 (1) | 105.9 (1) | 106.4 (1)    | 101.2 (1) |
| $O\varepsilon 1 - P - O\varepsilon 2$ | 113.9 (1) | 116.0 (1) | 114.3 (1)    | 114.5 (1) |
| $O\varepsilon 1 - P - O\varepsilon 3$ | 110.3 (1) | 111.4 (1) | 115.0 (1)    | 110.0 (1) |
| $O \epsilon 2 - P - O \epsilon 3$     | 111.9 (1) | 108.9 (1) | 108.8 (1)    | 112.2 (1) |
|                                       |           |           |              |           |

\* Results for the pL-SerP.H2O and L-SerP structures are from room temperature Mo X-ray data that we measured just prior to lowtemperature measurements for charge-density analyses (Kwiatkowski, Maniukiewicz & Blessing, 1994). Our room-temperature results confirm those of Putkey & Sundaralingam (1970) and Sundaralingam & Putkey (1970) from Cu X-ray data, but we have relabeled the atoms to conform to IUPAC-IUB conventional nomenclature, and we were able to resolve the symmetrically disordered 'half-H atoms' of the phosphate group in DL-SerP.H2O. The disordered H atoms were refined with restrained O—H = 0.95  $\pm$  0.005 Å and constrained  $U_{iso}(H)$  =  $1.5U_{iso/eq}(O)$ , and with their populations constrained to sum to unity. This gave  $P = O\varepsilon 2 = H_{0.56(3)}$  with a slightly longer P = O bond and P-O $\varepsilon$ 3-H<sub>0.44(3)</sub> with a slightly shorter P-O bond, and normal anisotropic displacement ellipsoids (Fig. 1) for  $O\varepsilon 2$  and  $O\varepsilon 3$ . Details of our re-analyses of the two SerP structures are included in the archived supplementary materials.

# Table 3. Conformation angles (°) in DL- and L-crystals of O-phosphothreonine and O-phosphoserine

| $\psi = N - C\alpha - C' = O'$ $\psi^{1,1} = N - C\alpha - C\beta - O\gamma$ $\chi^{1,2} = N - C\alpha - C\beta - C\gamma$ $\chi^{2} = C\alpha - C\beta - O\gamma - P$ $\chi^{3,1} = C\beta - O\gamma - P = O\epsilon 1$ $\chi^{3,2} = C\beta - O\gamma - P = O\epsilon 2$ | DL-ThrP<br>-14.4 (3)<br>73.5 (2)<br>-49.4 (3)<br>171.7 (2)<br>82.4 (2)<br>-155.4 (2) | L-ThrP<br>-15.1 (4)<br>69.5 (3)<br>-53.0 (4)<br>175.4 (2)<br>87.2 (3)<br>-148.0 (2) | DL-SerP.H <sub>2</sub> C<br>- 15.7 (3)<br>- 66.4 (2)<br>- 168.2 (1)<br>- 178.4 (2)<br>- 56.8 (2)<br>- 50.9 (2) | D* L-SerP*<br>-1.9 (3)<br>61.2 (2)<br>-<br>152.8 (2)<br>-45.9 (2)<br>79.8 (2)<br>161.0 (2) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $\chi^{3,3} = C\beta - O\gamma - P = O\varepsilon^{2}(H)$                                                                                                                                                                                                                  | -37.0(2)                                                                             | -33.1(3)                                                                            | 59.9 (3)                                                                                                       | -161.9 (2)                                                                                 |
|                                                                                                                                                                                                                                                                            |                                                                                      |                                                                                     |                                                                                                                |                                                                                            |

\* See footnote to Table 2.

 $y_{1} = \frac{1}{2} - z_{2}$ 

Table 4. Hydrogen-bond distances (Å) and angles (°) in DL and L crystals of O-phosphothreonine and Ophosphoserine\*

| $D' - D - H \cdots A - A'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H···A               | $D \cdot \cdot \cdot A$                                | D—H···A                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|------------------------|--|--|
| DL-ThrP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                        |                        |  |  |
| $P - O \varepsilon_3 - H \varepsilon_3 - O \varepsilon_1^i = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.63                | 2.542 (3)                                              | 160                    |  |  |
| $C' - O'' - H'' \cdots O \varepsilon 2^n = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.64                | 2.587 (3)                                              | 174                    |  |  |
| $N - H2 \cdot \cdot \cdot O \epsilon I^{m} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.87                | 2.812 (3)                                              | 156                    |  |  |
| $N = H1 \cdots O\epsilon 2^{i_1} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.81                | 2.805 (3)                                              | 177                    |  |  |
| $N - H3 \cdot \cdot \cdot O'' = C'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.94                | 2.918 (3)                                              | 166                    |  |  |
| ∟-ThrP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                        |                        |  |  |
| $P \rightarrow O \varepsilon 3 \rightarrow H \varepsilon 3 \cdots O \varepsilon 1' = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.63                | 2.529 (3)                                              | 157                    |  |  |
| $C' - O'' - H'' \cdots O \varepsilon 2'' = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.62                | 2.526 (3)                                              | 158                    |  |  |
| $N = H2 \cdots O \varepsilon 1^{n} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.93                | 2.827 (4)                                              | 148                    |  |  |
| $N - H1 \cdots O\epsilon 2^{m} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.83                | 2.826 (4)                                              | 179                    |  |  |
| $N = H3 \cdots O'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                | 2.858 (4)                                              | 166                    |  |  |
| DL-SerP.H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                        |                        |  |  |
| $P - O \varepsilon^2 \cdots H \cdots O \varepsilon^2 = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.56                | 2.494 (3)                                              | 168†                   |  |  |
| $P = O \varepsilon 3 \cdots H \cdots O \varepsilon 3^{i\lambda} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                | 2.493 (3)                                              | 172†                   |  |  |
| $C' - O'' - H'' \cdots O \varepsilon 1^{\lambda} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.64                | 2.593 (2)                                              | 178                    |  |  |
| $N = H_1 \cdots O_{\epsilon} 1^{x_1} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.96                | 2.886 (3)                                              | 153                    |  |  |
| N-H2···OW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.82                | 2.793 (2)                                              | 164                    |  |  |
| $N - H3 \cdot \cdot \cdot OW^{x_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.99                | 2.868 (2)                                              | 145‡                   |  |  |
| $N = H_3 \cdots O'^{\lambda_1} = C'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.45                | 3.107 (3)                                              | 123‡                   |  |  |
| $OW - HW I \cdots O \epsilon I^{xn} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.92                | 2.850 (2)                                              | 170                    |  |  |
| $OW - HW_2 \cdots O_{\varepsilon} 2^{xiii} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.83                | 2.770 (3)                                              | 170                    |  |  |
| L-SerP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                        |                        |  |  |
| $P = O \varepsilon_3 = H \varepsilon_3 \cdots O \varepsilon_1^{\times N} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.63                | 2.547 (2)                                              | 162                    |  |  |
| $C' - O'' - H'' \cdots O \varepsilon 2^{xx} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.53                | 2.477 (2)                                              | 177                    |  |  |
| $N - H1 \cdots O\epsilon 2^{x \vee i} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.80                | 2.780 (3)                                              | 165                    |  |  |
| $N = H3 \cdots O\epsilon 1^{xvn} = P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.84                | 2.786 (3)                                              | 156                    |  |  |
| $N - H2 \cdot \cdot \cdot O''^{xxm}(H) - C'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.98                | 2.953 (4)                                              | 163                    |  |  |
| Symmetry codes: (i) $-x$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-y_{1} - z_{2}$ (i | i) x, $\frac{1}{2} - v$ , $-\frac{1}{2} + \frac{1}{2}$ | z; (iii) $1-x, -y, -y$ |  |  |
| $-z$ ; (iv) $1-x_1 - \frac{1}{2} + y_1 - \frac{1}{2} - z$ ; (v) $-\frac{1}{2} + x_1 \frac{1}{2} - y_1 - z$ ; (vi) $\frac{1}{2} - x_1 - y_1 \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                        |                        |  |  |
| + -: (vii) $\frac{1}{2}$ + x, $\frac{1}{2}$ - y, -:: (viii) $1 - x, \frac{1}{2}$ + y, $\frac{1}{2}$ - :; (ix) - x, y, $-\frac{1}{2}$ - :;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                                        |                        |  |  |
| $(x) = x + \frac{1}{2} + \frac{1}$ |                     |                                                        |                        |  |  |
| $+ x + 1 - y + 1 + 7;$ (xiv) $-x + 1 + y + -\frac{1}{2} - 7;$ (xv) $-\frac{1}{2} - x, -y, -\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                                        |                        |  |  |
| $r'(xyi) = 1 + r y r'(xyii) = 1 - r - y - 1 + r'(xyiii) - 1 - r - \frac{1}{2} + r'(xyiii) = 1 - r'(xyiii)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                        |                        |  |  |
| $a_{i}(A^{i}) = i + A_{i} \ge a_{i}(A^{i})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ···, <u> </u>       | ., 2, (ATH                                             | -,, 2 ·                |  |  |

\* H atoms were found in difference electron density maps and refined with O-H and N-H bond lengths restrained to 0.95 and  $1.00 \pm 0.005$  Å, respectively. † These two P—O—H···O=P = P=O...H-O-P hydrogen bonds each involve a pair of symmetrically disordered 'half-hydrogen atoms' (see footnote to Table 2).  $\ddagger$  These are two branches of a three-center N—H(···O)<sub>2</sub> hydrogen bond.

Non-H atoms were refined anisotropically. H atoms were located in difference electron-density maps and refined isotropically with C-H, N-H and O-H bond lengths restrained to 1.05, 1.00 and 0.95  $\pm$  0.005 Å, respectively, and  $U_{iso}(H)$ =  $1.5U_{iso/eq}(C, N, or O)$ . Atomic scattering factors were as given by Cromer & Waber (1974), including the spherically contracted H-atom scattering factor from Stewart, Davidson & Simpson (1965).

Unit-cell dimensions and intensity data: Siemens diffractometer software (Siemens, 1990). Diffraction data reduction and error analysis: local programs (Blessing, 1989). Structure determination: *DIRDIF* (Beurskens *et al.*, 1992) as implemented in *TEXSAN* (Molecular Structure Corporation, 1992). Least-squares refinement: *SHELXL*93 (Sheldrick, 1993). Structure drawings: *ORTEPII* (Johnson, 1976); *PLUTO* (Motherwell, 1979) as implemented in *TEXSAN* and *PLATON* (Spek, 1990).

We are grateful for support of this research by Fulbright Fellowships to WM and WK, grant No. 3 03 02 91 01 from the Polish Committee for Scientific Research to WK, and NIH grant No. GM34073 to RHB.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1167). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397, and references cited therein.
- Brock, C. P., Schweizer, W. B. & Dunitz, J. D. (1991). J. Am. Chem. Soc. 113, 9811–9820.
- Cole, F. E. (1968). Am. Crystallogr. Assoc. Meet., Tucson, Arizona, February. Abstract No. F8, p. 35.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, edited by W. C. Hamilton & J. A. Ibers, p. 71. Birmingham: Kynoch Press.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, pp. 40-42. Berlin: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kwiatkowski, W., Maniukiewicz, W. & Blessing, R. H. (1994). Am. Crystallogr. Assoc. Meet., Atlanta, Georgia, June 1994. Abstract No. PBO-05, p. 95. IUCr Sagamore XI Conference on Charge, Spin, and Momentum Densities, Brest, France, August 1994, Abstract No. P4-58. In preparation.
- Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Programs. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Motherwell, S. (1979). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
- Putkey, E. & Sundaralingam, M. (1970). Acta Cryst. B26, 782-789.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990). Diffractometer Control Software. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Slone, C. J. & Cole, F. E. (1971). Am. Crystallogr. Assoc. Meet., Ames, Iowa, August 1971. Abstract No. G9, p. 56.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Sundaralingam, M. & Putkey, E. F. (1970). Acta Cryst. B26, 790-800. Wallach, O. (1895). Liebigs Ann. Chem. 286, 90-143.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1741-1743

# 3-Isopropylamino-4-methyl-4*H*-pyrido-[4,3-*e*][1,2,4]thiadiazine 1,1-Dioxide

Léon Dupont,<sup>*a*</sup> Bernard Pirotte,<sup>*b*</sup> Pascal de Tullio<sup>*b*</sup> and Jacques Delarge<sup>*b*</sup>

<sup>a</sup>Unité de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium, and <sup>b</sup>Laboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, Rue Fusch 5, B-4000 Liège, Belgium. E-mail: u210406@vm1.ulg.ac.be

(Received 16 January 1996; accepted 8 February 1996)

# Abstract

The title compound,  $C_{10}H_{14}N_4O_2S$ , is the 4-methyl analogue of an original potassium channel opener molecule related to diazoxide. The crystal structure determination of a compound with a methyl substituent in the 4-position provides geometric reference data which may be useful for analysing the preferential 2*H*- or 4*H*-tautomeric form adopted in unsubstituted derivatives of this class of compounds in the solid state.

# Comment

The title compound, (I), is the methyl analogue of (II), a potassium channel opener structurally related to diazoxide [7-chloro-3-methyl-2H(or 4H)-1,2,4-benzothiadiazine 1,1-dioxide] (Bandoli & Nicolini, 1977; Pirotte *et al.*, 1993; de Tullio *et al.*, 1996).



The present crystallographic investigation of (I) will help our knowledge of the conformational behaviour of 4-methyl-substituted derivatives compared with unsubstituted derivatives of this class of heterocyclic compounds. Indeed, the presence of a methyl substituent in the 4-position of the thiadiazine ring imposes the adoption of a 4H-tautomeric form for (I). Thus, comparison of the N2-C3 [1.326 (4) in (I) and 1.315 (4) Å in (II)] and C3-N4 [1.381 (4) in (I) and 1.366 (4) A in (II)] bond lengths of the two compounds may allow prediction of the preferential tautomeric form adopted by compound (II) and other unsubstituted derivatives of this class of compounds in the solid state. The cohesion of the crystal is the result of van der Waals interactions and of one intermolecular N11-H11...O1 hydrogen bond;  $N11 \cdots O1^{i}$  2.882 (3),  $H11 \cdots O1^{i}$  2.10 Å and N11—H11···O1<sup>i</sup> 152° [symmetry code: (i) 1-x,  $-\frac{1}{2} + y, \frac{1}{2} - z].$